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Abstract

This is the first estimation on carbon dynamics in the aboveground coarse wood
biomass (AGWB) of wetland forests in the Pantanal, located in Central Southern Amer-
ica. In four 1-ha plots in stands characterized by the pioneer species Vochysia diver-
gens Pohl (Vochysiaceae) forest inventories (trees ≥10 cm diameter at breast height,5

DBH) have been performed and converted to predictions of AGWB by five different
allometric models using two or three predicting parameters (DBH, tree height, wood
density). Best prediction has been achieved using allometric equations with three in-
dependent variables. Carbon stocks (50% of AGWB) vary from 7.4 to 100.9 Mg C ha−1

between the four stands. Carbon sequestration differs 0.50–4.24 Mg C ha−1 yr−1 esti-10

mated by two growth models derived from tree-ring analysis describing the relation-
ships between age and DBH for V. divergens and other tree species. We find a close
correlation between estimated tree age and C-stock, C-sequestration and C-turnover
(mean residence of C in AGWB).

1 Introduction15

The aboveground coarse wood biomass (AGWB) of tropical forests is a dynamic carbon
pool and plays an important role in the global carbon cycle. In areas undergoing defor-
estation AGWB is also a source of carbon emission to the atmosphere (Hougthon et al.,
2000). However, uncertainties remain in the absolute magnitude of AGWB in different
tropical forest ecosystems and there is a controversial discussion how the carbon pools20

will react to changing environmental factors such as increased CO2-concentrations in
the atmosphere and shifting patterns in precipitation (Ometto et al., 2005; Lloyd et al.,
2007). The Pantanal is one of the largest wetlands in the world, but increases in de-
forestation for the implantation of cultivated pastures and agriculture lands endanger
its ecosystems (Silva et al., 1999; Seidl et al., 2001). Rivers periodically flood the25

Pantanal as a result of the seasonal precipitation regime in their watersheds (Nunes
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da Cunha and Junk, 2004). Wetland forests in the Pantanal establish at elevations up
to 3 m above the mean water level and consist of different species compositions de-
pending on the flood and drought tolerance of the tree species (Nunes da Cunha and
Junk, 2001). The forests cover 30% of the total area and have crucial functions in this
unique wetland ecosystem as habitats for a large number of partial endemic flora and5

fauna, and as biogeochemical sinks and sources (Silva et al., 1999; Nunes da Cunha
et al., 2004). However, their function in the biogeochemical cycle as dynamic C-pool is
unknown, but fundamental to understand forest dynamics to develop plans for conser-
vation and sustainable managements. Estimations of AGWB for forests in the Pantanal
so far have been performed for single tree species (Haase and Haase, 1995; Salis10

et al., 2006), but no estimations for C-stocks in AGWB and the forest’s productivity in
terms of C-sequestration are available.

Large areas in the Pantanal are covered by forests dominated by Vochysia divergens
Pohl (Vochysiaceae) (Brazilian name: “cambará”), a light demanding, flood-adapted pi-
oneer tree species reaching up to 25 m height and more than 80 cm in diameter (Nunes15

da Cunha and Junk, 2004; Lorenzi, 2002). This species invades open areas develop-
ing almost monospecific stands with preference to medium and long-term flooded sites
locally called “cambarazal” (Pott, 1982; Nunes da Cunha and Junk, 2004; Arieira and
Nunes da Cunha, 2006). Vochysia is brevi-deciduous remaining leafless for a short
period (Schöngart et al., 2002) after shedding its leaves between April and July at the20

beginning of the dry season (Nunes da Cunha and Junk, 2004), which results in the
formation of annual tree rings (Ishii, 1998; Fortes, 2006). This allows the application of
tree-ring analysis (dendrochronology) to determine ages and diameter increment rates
for tree species of the Pantanal (Ishii, 1998; Mattos, 1999; Arruda, 2006; Fortes, 2006).
Tree growth and colonization of V. divergens and other tree species is sensitive to in-25

terannual rainfall variability (Mattos, 1999; Fortes, 2006) and consequently this species
responds to decadal rainfall variability by invading open areas during wet episodes and
retreating during dry episodes such as in the beginning of the 1960s (Nunes da Cunha
and Junk, 2004), thus creating a patchwork of different successional stages. The tree
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species has relatively high diameter increment rates of about 7 mm a−1 at stand ages
of 25–66 years in the southern Pantanal (Ishii, 1998).

In this study we analyze stand structure of four V. divergens-dominated stands. We
estimate C-stocks of the AGWB using different allometric models and discuss their
suitability. We determine tree ages and diameter increment rates of V. divergens and5

other tree species by tree-ring analyses to estimate annual C-sequestration rates in
AGWB.

2 Material and methods

2.1 Study area

The field study was carried out in the northern Pantanal of the Brazilian state Mato10

Grosso located in the centre of South America (16◦–22◦ S; 55◦–58◦ W) (Fig. 1). The
study site is the SESC Pantanal Ecological Station located in the vicinity of the north-
ern limit of the Particular Reserve of Natural Patrimony (PRNP), close to the Cuiabá
River (Arieira and Nunes da Cunha, 2006). Mean annual rainfall of the region varies be-
tween 1100–1200 mm and shows a distinct seasonality as a result of the rainy season15

from October to April and the dry season from May to September with mean temper-
atures between 23◦C and 26◦ C in the rainy and dry season, respectively (Hasenack
et al., 2003). The flood pattern in the northern Pantanal is strongly influenced by
the local precipitation and maximum flood levels occur during January and February,
synchronous with the rainy season (Nunes da Cunha and Junk, 2001, 2004). The20

Vochysia-stands stock on gley soils characterized by a bluish-gray color resulting from
the iron reduction (Fortunatti and Couto, 2004).
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J. Schöngart et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

2.2 Field measurements

Four 1-ha plots were established in stands with presence of V. divergens, in differ-
ent positions along the flood gradient (Arieira and Nunes da Cunha, 2006) annually
inundated by a water column of 0.72–1.79 m (Table 1). Each plot was divided in
100 quadratic units of 10×10 m. The stands represent different successional stages5

with different population structures of V. divergens as the result of the variability in
hydro-geomorphologic conditions but also land-use history (Nunes da Cunha and Junk,
2004; Arieira and Nunes da Cunha, 2006). In all plots we measured diameter at breast
height (DBH) with a diameter tape 130 cm above the ground (in case of buttresses the
diameter was recorded directly above them). From 75–91% of all individuals in the10

stands total tree height was measured with a Blume Leiss BL 6 (Zeiss, Jena). Sterile
and fertile botanical material was collected from the tree species and identified in the
Herbarium of the Federal University of Mato Grosso (UFMT).

2.3 Estimation of C-stocks and sequestration in AGWB

The application of the appropriate allometric equation for biomass estimations is of15

crucial importance to reduce errors (Ketterings et al., 2001; Chave et al., 2004). Esti-
mations of AGWB in the Pantanal have been performed by species-specific allometric
models using only DBH as predictor (Haase and Haase, 1995; Salis et al., 2006).
However, allometric models developed for single species, which only use DBH as
predicting parameter, have biases to errors, if they are applied to estimate AGWB of20

forest composed by other tree species, because they have considerably varying tree
heights, wood densities, and crown architectures depending on the climatic, hydrologic
and edaphic conditions and the stand age (successional stage) (Worbes et al., 1992;
Chave et al., 2004, 2005). Therefore, we test in this study regression models using two
or three independent parameters to convert the forest inventory data into estimations of25

the AGWB. These allometric models are derived from several harvested tree species
of one or more stands (Chambers et al., 2001) or many forest types of different tropical
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J. Schöngart et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

regions (Brown et al., 1989; Chave et al., 2005).
An important parameter for AGWB estimation is wood specific density (ρ, in g cm−3),

which can vary considerably between tree species even in the same stand (Fearnside,
1997; Schöngart, 2003; Baker et al., 2004; Nogueira et al., 2005). From 48 characteris-
tic tree species of the Pantanal comprising 133 samples (cores and stem disks) ρ was5

calculated by the dry mass/fresh volume ratio after measuring the fresh volume in the
filed and drying the sample for 72 h at 105◦C (Schöngart et al., 2005). With this data
set (Arruda, 2006) we estimated ρ for 67−98% of the individuals in the four stands. For
another 4–31% of the individuals we used ρ published values (Loureiro et al., 1979;
Worbes et al., 1992; Fearnside, 1997; Ter Steege, 2000; Schöngart, 2003; Baker et10

al., 2004; Wittmann et al., 2006). For the remaining trees (<1.6% of all individuals) we
estimated ρ by the mean value of the stand (Table 1).

Aboveground coarse wood biomass (AGWB, in kg) was estimated for every tree
using different allometric models. Cannell (1984) suggested that the AGWB of a tree
corresponds to the product of the trunk basal area (BA=π DBH2/4), ρ, total tree height15

(H , in m) and a constant form factor (F=0.6) (Nebel et al., 2001):

AGWB = F × ρ × H × π × (DBH/2)2 (1)

Chave et al. (2005) developed allometric models based on a large data set from
the tropics to estimate AGWB for different forest types. For forests with a distinct dry
season (rainfall below 1500 mm per year, over 5 month dry season), they suggested20

two models:

AGWB = 0.112 × (ρ × H × DBH2)0.916 (2)

AGWB = ρ × exp[−0.667 + 1.784 ln(DBH) + 0.207 ln(DBH)2 − 0.0208 ln(DBH)3] (3)

Malhi et al. (2004) estimated AGWB for 104 1-ha plots in non-flooded and floodplain
forests of the Amazon basin using an allometric model from the Central Amazonian25
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upland forests (Chambers et al., 2001) corrected by a factor considering the ρ of the
tree:

AGWB = ρ/0.67 × exp[0.33(ln(DBH))
+0.933(ln(DBH2)) − 0.122(ln(DBH))3] − 0.37

(4)

Many studies use the allometric model established by Brown et al. (1989) based on
168 harvested trees in five humid tropical forests estimating AGWB by the following5

equation:

AGWB = 0.044 × (DBH2 × H)0.9719 (5)

By Eqs. (1–5) we estimate AGWB for every tree in stands 1–4. For formula using H
as an independent parameter we fitted the relationship between DBH and tree height
for every stand using a non-linear regression model to calculate the height for the10

remaining trees by their DBH:

H = a + bln(DBH) (6)

2.4 Tree ring analysis

In the surroundings of the PRPN stem disks were collected at 130 cm height between
August 2004 and September 2005 with a chainsaw comprising 26 trees of V. divergens15

(Fortes, 2006) and 110 trees of 57 other common wetland tree species (Arruda, 2006).
The wood samples were analyzed in the dendrochronological laboratory at the Na-
tional Institute for Amazon Research (INPA) in Manaus, using standard dendrochrono-
logical procedures (Pilcher, 1990). Samples were progressively sanded to analyze
the tree-ring structure macroscopically by wood anatomical features characterized by20

density variations (e.g., Annonaceae, Lauraceae, Myrtaceae), marginal parenchyma
bands (e.g., Fabaceae, Meliaceae), alternating fiber and parenchyma tissues (e.g.,
Sapotaceae, Moraceae, Lecythidaceae) or rarely by variations in the vessel size and
distribution (Worbes, 2002). Ring width was measured to the nearest 0.01 mm using
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a digital measuring device (LINTAB) supported by the software TSAP (Time Series
Analyses and Presentation).

Tree age was related to DBH to produce one model for V. divergens and a second
model for the other tree species fitting the age-diameter relationship to a non-linear
(sigmoidal) regression (Schöngart et al., 2007):5

DBH = a/(1 + (b/age)c) (7)

From these two models we derived the current (annual) diameter increment (CDI) for
V. divergens and other tree species as the difference in the DBH from year to year (t)
by the following equation:

CDI = DBHt − DBHt−1 (8)10

To estimate the annual aboveground wood biomass production of a tree (AGWBP,
kg yr−1) we built the difference in the AGWB estimated by the Eqs. (1–5) in the year
of the stand inventory (t) and the year before (t−1). Therefore we subtracted the CDI
of Eq. (8) from the DBH in the models (1)–(5) and reduced tree height by the stand
specific diameter-height relationship of Eq. (6):15

AGWBP = AGWBt − AGWBt−1 (9)

Carbon content was estimated 50% of AGWB (C-stock) and AGWBP (C-
sequestration) (Clark et al., 2001). The mean residence time of carbon in the liv-
ing AGWB of a stand (C-turnover rates) results from the ratio of its C-stock and C-
sequestration rate (Malhi et al., 2004). Growth modeling was performed with the soft-20

ware program X-Act 7.0 (SciLab) and Statistica 6.0.

3 Results

Trees per area in the four studied stands vary between 126–446 individuals ha−1 com-
prising 9–22 tree species ha−1 (≥10 cm DBH) (Table 1). The relative abundance of V.
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divergens differs considerably between the studied stands ranging from 4% (stand 1),
47% (stand 3), 54% (stand 4) to 84% (stand 2). Mean DBH is 18.8 cm in stand 1, the
other three stands have much higher average DBHs between 32.0 and 38.3 cm. The
mean tree height (8.0 m) in stand 1 is two times lower than in the stands 2–4 (15.8–
17.0 m). Basal area varies between 4.1 m2 ha−1 in stand 1 and 37.5 m2 ha−1 in stand5

4. Due to the high relative abundance of V. divergens in stands 2–4, this species com-
prises 79–91% of the stand’s basal area, while in stand 1 V. divergens only achieves
7% of the total basal area. Vochysia has over 90% of the total volume in stands 2–4, in
stand 1 only about 10%. The wood density and standard deviation between the stands
varies between 0.55±0.15 g cm−3 (stand 1) and 0.42±0.07 g cm−3 (stand 2). Aver-10

age ρ of the characteristic tree species of stand 1–4 is 0.47±0.13 g cm−3 (Table 2); V.
divergens has a ρ of 0.40±0.08 g cm−3. Mean diameter increment rate (MDI), calcu-
lated by the ratio DBH and tree age determined by tree-ring analysis (Arruda, 2006;
Fortes, 2006), indicates 7.9±2.8 mm yr−1 for V. divergens, the MDI of all species is
6.3±2.8 mm yr−1 (Table 2). Wood density and MDIs are significantly correlated (n=106;15

r=0.44; P <0.001).
To estimate the C-stocks, we apply Eqs. (1–5) using DBH, ρ and tree height as

independent variables (predictors). For every individual, tree height is calculated by
the stand-specific diameter-height relationship (Fig. 2), explaining between 35% and
68% of the variability between the two parameters. Carbon stocks in the AGWB differ20

considerably between the four stands, but also between the allometric models for the
same stand (Table 3). The differences of C-stocks in AGWB estimated by Eqs. (1) and
(2) indicate only little variation within a stand, while Eq. (3) produces low C-stocks and
Eqs. (4) and (5) tend towards high values. The estimate varies more than the twofold
between different equations. Stand 1 has the lowest C-stocks in AGWB varying be-25

tween 6.8 Mg C ha−1 and 18.3 Mg C ha−1. Estimations of C-stocks in stand 2 differ from
56.9 to 116.1 Mg C ha−1 and in stand 3 from 54.5 to 108.8 Mg C ha−1. The highest C-
stocks are indicated for stand 4 varying between 80.8 Mg C ha−1 and 164.9 Mg C ha−1.

Tree age and DBH of V. divergens (n=26; r2=0.94; P <0.0001) and other tree species
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(n=108; r2=0.70, P <0.0001) correlate significantly (Fig. 3). Based on the relationship
between ρ and MDIs as well as tree age and DBH we develop a quadratic multiple
regression model that accurately predicts tree age by wood density and DBH as inde-
pendent parameters (n=117; r2=0.86; P <0.0001) by the following equation (Fig. 4):

Age = −8.1332 + 0.8809 × DBH + 39.6445 × ρ
+0.0005 × DBH2 + 0.6305 × ρ × DBH − 21.19 × ρ2 (10)5

Partial regression analysis indicates that the DBH (Beta=0.921; t=26.68; P <0.0001)
contributes more than wood density (Beta=−0.263; t=5.33; P <0.0001) to explain the
variability of the tree age. By Eq. (10) we estimated for every tree its age, and by the
models in Fig. 3 the CDI at the given age. Height increment was estimated by the
stand-specific DBH-height relationship (Fig. 2) calculating the difference of the height10

at DBH and the height at DBH–CDI. Applying Eqs. (1)–(5) this produces the difference
between the C-stocks in ABGW for the year of the forest inventory and the year before
and gives an estimate of the annual C-sequestration rate shown in Table 3. Mod-
els (1) and (2) indicate almost the same C-sequestration in the four studied stands,
while model (3) tends to yield lower values and models (4) and (5) predict much higher15

values. The five allometric models indicate C-sequestration in the AGWB of stand 1 be-
tween 0.47 Mg C ha−1 yr−1 and 1.23 Mg C ha−1 yr−1. For stand 2 the models indicate C-
sequestration in AGWB varying between 3.00 Mg C ha−1 yr−1 and 6.97 Mg C ha−1 yr−1.
For the stands 3 and 4 the models predict estimations of C-sequestration varying be-
tween 2.00–4.89 Mg C ha−1 yr−1 and 2.29–4.28 Mg C ha−1 yr−1, respectively.20

4 Discussion

In this study we show a new approach in tropical forest research of estimating C-
sequestration in AGWB by means of growth models based on tree-ring analyses.
Ishii (1998) first indicated the occurrence of annual tree rings in the Pantanal us-
ing radiocarbon-dating and cambial wounding (windows of Mariaux). Mattos (1999)25
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related ring-width of Tabebuia heptaphylla successfully with precipitation patterns in
the Southern Pantanal. Ring-width of V. divergens in the Northern Pantanal is sig-
nificantly correlated with the annual precipitation regime indicating the existence of
annual tree rings for this species (Fortes, 2006). These results are congruent with
many other dendrochronological studies performed in tropical regions with a seasonal5

precipitation regime (e.g., Jacoby and D’Arrigo, 1990; Stahle et al., 1999; Worbes,
1999; Enquist and Leffler, 2001; Fichtler et al., 2004; Brienen and Zuidema, 2005;
Schöngart et al., 2006; Therrell et al., 2006). In comparison to repeated diameter mea-
surements or permanently installed dendrometers, which yield confidential results only
after several years of monitoring, dendrochronology allows an immediate estimation10

of C-sequestration comprising the whole life span of a tree by retrospective analysis
(Worbes, 2002).

By a multiple regression model we predict tree age using DBH and ρ as independent
parameters. Mean radial increment correlates negatively with ρ, as it is also known
for tree species from the Central Amazonian floodplain forests (Worbes et al., 1992;15

Schöngart, 2003). This can be explained by the percentage of wood-anatomical fea-
tures such as fiber length and fiber diameter, percentage of parenchyma and vessels
as well as the incorporation of mineral salts and chemical substances in the heartwood
such as terpenes, essential oils, tannins, flavonoids, aldheydes, alcohols, and colored
pigments leading to different wood densities. Pioneer tree species generally have low20

fiber contents and high vessel areas (Worbes, 1996) resulting in low wood densities,
while climax tree species have high wood densities due to high contents of fiber with
thick cell walls with incorporations of secondary substances and a relatively low vessel
area. This relationship allows a reliable estimation of tree age by measuring DBH and
ρ, which can be easily determined by a wooden core of the trunk (Chave et al., 2004).25

Our results indicate that the C-stocks and C-sequestration of the AGWB differ con-
siderably depending on the applied allometric model (Table 3). The most accurate
estimation of C-stocks and consequently C-sequestration is achieved by the allometric
models (1) and (2) using DBH, ρ and tree height as predictors, as also indicated by
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Chave et al. (2005). Equation (3) uses only DBH and ρ to estimate AGWB in dry forests
and produces much lower values than allometric model (2). Since the models (2) and
(3) are derived from the same data set, these differences can be traced back to varia-
tion among the tree height between the Pantanal forests and the dry forests analyzed
by Chave et al. (2005). Model (4) applied by Malhi et al. (2004) overestimates C-stocks5

in the AGWB of the studied stands, because this allometric equation has been estab-
lished by harvested trees from the Central Amazonian terra firme forest (Chambers
et al., 2001), where trees are much higher than in the Pantanal. Equation (5) devel-
oped by Brown et al. (1989) produces the highest predictions of AGWB, because this
model does not consider ρ, which is lower in the successional stages of V. divergens-10

dominated wetland forests (0.42–0.55 g cm−3, Tables 1 and 2) than the mean value of
the data set (0.60–0.65 g cm−3) (Brown, 1997). The majority of AGWB estimations in
tropical forests performed so far applies allometric models, which use only DBH as a
predictor, since this parameter is easily to measure in tropical forests. But the conver-
sion of these field measurements to biomass estimations can produce large errors due15

to the variation in height and ρ between forest types and tree species. Realistic estima-
tions of C-stocks and sequestration in AGWB can be only achieved applying allometric
models using DBH, ρ and tree height as predictors, especially when these estimations
are performed in new forest types.

We estimate (minimum) stand age by the maximum tree age produced by the multi-20

ple regression model (Fig. 4) (Worbes et al., 1992), which results between 64 years
(stand 1) and 124 years (stand 4). We calculate the mean value of the estima-
tions based on Eqs. (1) and (2) considering DBH, tree height and ρ as predic-
tors. The 64 year-old stand 1 indicates C-stocks in the AGWB of 7.4 Mg C ha−1, se-
questrating about 0.5 Mg C ha−1 yr−1, which results in a mean residence time of C25

of 14.7 years. With increasing stand age C-stock accumulates to 70.9 Mg C ha−1

(stand 2; 99 years old), 68.8 Mg C ha−1 (stand 3; 108 years old), and 100.9 Mg C ha−1

(stand 4; 124 years old). Carbon sequestration reaches its maximum in stand 2
with 4.24 Mg C ha−1 yr−1 and declines with increasing stand age to 2.75 Mg C ha−1 yr−1

2114

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/5/2103/2008/bgd-5-2103-2008-print.pdf
http://www.biogeosciences-discuss.net/5/2103/2008/bgd-5-2103-2008-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD
5, 2103–2130, 2008

Biomass Pantanal
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(stand 3) and 3.04 Mg C ha−1 yr−1 (stand 4). The mean residence time of C in AGWB
growths with increasing stand age to 16.7 years (stand 2), 25.0 years (stand 3) and
33.2 years (stand 4). Carbon stocks and C-sequestration of the AGWB in the wetland
forests of the Pantanal are lower than those of Central Amazonian floodplain forests in-
undated by nutrient-rich white-water rivers (várzea) (Worbes, 1997; Schöngart, 2003)5

estimated by model (1) (Table 4). The mean residence time of carbon in the AGWB
(C-turnover) of the successional stages in the Pantanal is in the same range as in the
Amazonian floodplain forests. Tropical dry forests in Mexico indicate higher C-stocks
in the AGWB than the studied wetland forests (Vargas et al., 2008).

In Fig. 5 we relate C-stock, C-sequestration and mean residence time of carbon10

with tree age of 1079 individuals estimated by Eq. (10). A sigmoidal regression model
explains 97% of the variability between tree age and C-stock in the AGWB of a tree.
From this model we derive the annual C-sequestration calculating the difference in C-
stocks from year to year. The model indicates a maximum C-sequestration at a tree age
of about 80 years, when trees approximately accumulated almost 1 Mg C in the AGWB.15

The mean residence time of carbon in the AGWB at this tree age is 41 years. After
this tree age the mean residence time of carbon in the AGWB increases considerably
indicating that V. divergens-forests achieved maturity at stand ages of more than 80 yrs.
After this age the forests have the potential to keep sequestrated carbon from the
atmosphere over several decades accumulated in the AGWB.20

Dendroclimatological studies indicate for many tropical regions such as Indone-
sia (Jacoby and D’Arrigo, 1990), Namibia (Fichtler et al., 2004), Central Amazonia
(Schöngart et al., 2004, 2005), West Africa (Schöngart et al., 2006) and Zimbabwe
(Therrell et al., 2006) significant correlations between tree growth and ocean’s sea sur-
face temperatures (SSTs). Tree growth of V. divergens in the N-Pantanal responds to25

rainfall variability and it is significantly lower during positive SST anomalies in the El
Niño 1+2 region of the tropical Pacific basin (0–10◦ S, 80–90◦ W) causing significantly
lower rainfall in the Pantanal during the period October-December (r=−0.39; P <0.01)
(Fortes, 2006). If these drought episodes last for several years, as it occurred during
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the 1960s, forests of V. divergens die back (Nunes da Cunha and Junk, 2004), emitting
large amounts of carbon from the AGWB to the atmosphere due to the high mortal-
ity rates. On the other hand, consecutive years of wet conditions favor the invasion
of V. divergens into open areas and due to the higher increment rates more carbon is
accumulated in the AGWB. However, future climate scenarios (IPCC, 2007) indicate in-5

creasing SSTs in the tropical oceans, which will affect C-stock in AGWB of the wetland
forests in the Pantanal, lowering C-sequestration rates in the V. divergens-dominated
forests and increasing C-emission from the AGWB to the atmosphere. To what extent
more drought resistant species will substitute V. divergens stands and compensate for
the lower sequestration rates remains an open question.10

5 Conclusions

Total C-stocks and C-sequestration in the AGWB of Pantanal’s wetland forests of 64
to 124 years stand age vary considerably between 7.4–100.9 Mg C ha−1 and 0.50–
4.24 Mg C ha−1 yr−1, respectively. In this study we apply dendrochronology to estimate
changes in C-stocks of AGWB, which, for our knowledge, is the first time in tropical for-15

est research. Annual tree rings are widely distributed in the tropics and dendrochronol-
ogy is a powerful methodology for a fast assessment of forest productivity at different
stand ages and can be applied in different tropical forest ecosystems. Such information
is of importance in the actual discussion of the function of tropical forests as C-sinks
in the background of the rapid ongoing global and regional climate change. The Pan-20

tanal wetland consists of different forest types as a consequence of varying edaphic,
hydrologic and climatic conditions as well as land-use change. More information on
C-stocks, C-sequestration and climate-growth relationships of the different forest types
composed of drought-resistant and flood-tolerant tree species are necessary to give a
better picture of the role of wetland forests in the carbon cycle of the Pantanal.25
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J. Schöngart et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

the SESC Reserve – RPPN for their support at the fieldwork and W. J. Junk for discussion.

References

Arieira, J. and Nunes da Cunha, C.: Fitossociologia de uma floresta inundável monodominante
de Vochysia divergens Pohl, (Vochysiaceae) no pantanal norte, MT, Brasil, Acta Bot. Bras.,
20, 268–580, 2006.5
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do Pantanal Sul Mato-grossense, Ph.D. thesis, University of São Carlos-SP, Brazil, 140 pp.,
1998.

Jacoby, G. C. and D’Arrigo, R. D.: Teak (Tectona grandis L.F.), a tropical species of large-scale
dendroclimatic potential, Dendrocronologia, 8, 83–98, 1990.30

Ketterings, Q. M., Coe, R., Van Noordwijk, M., Ambagau, Y., and Palm, C. A.: Reducing un-
certainty in the use of allometric biomass equations for predicting above-ground biomass in
mixed secondary forests, Forest Ecol. Manag., 146, 199–209, 2001.

2118

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/5/2103/2008/bgd-5-2103-2008-print.pdf
http://www.biogeosciences-discuss.net/5/2103/2008/bgd-5-2103-2008-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD
5, 2103–2130, 2008

Biomass Pantanal
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Brasil, Ed. Nova Odessa, Brazil, 367 pp., 2002.
Loureiro, A. A., Da Silva, M. F., and Alencar, J. C.: Essências madeireiras da Amazônia,
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Table 1. Stand parameters of trees ≥10 cm DBH in four 1-ha stands in the Pantanal (std:
standard deviation). Numbers in brackets indicate relative numbers for V. divergens.

Parameter Unit Stand 1 Stand 2 Stand 3 Stand 4

Mean flood height m 0.72±0.28 1.13±0.16 1.46±0.27 1.79±0.15
Tree density trees ha−1 126 (4.0%) 446 (84.3%) 251 (47.0%) 256 (54.3%)
Tree species spp. ha−1 22 12 9 15
Mean DBH±std cm 18.8±7.6 36.1±11.4 32.0±15.7 38.3±20.0
Mean tree height±std m 8.0±3.1 15.8±6.7 16.6±6.5 17.0±6.5
Basal area m2 ha−1 4.1 (7.3%) 28.3 (91.0%) 25.1 (79.4%) 37.5 (86.6%)
Volume* m3 ha−1 23 (9.5%) 337 (99.3%) 320 (90.9%) 483 (91.5%)
Mean wood density±std g cm−3 0.55±0.15 0.42±0.07 0.47±0.10 0.47±0.09

*Estimated by basal area×tree height×0.6 (form factor) (Cannell, 1984).
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Table 2. Wood density ρ and mean diameter increment (MDI) rates of characteristic tree
species in the Pantanal (Arruda, 2006).

Tree species N (ρ/MDI) ρ (g cm−3) MDI∗ (mm)

Albizia polyantha (Spreng. F.) Lewis (Fabaceae) 0/4 – 5.4±1.5
Alchornea discolor Poepp. (Euphorbiaceae) 2/3 0.34±0.04 7.7±6.5
Byrsonima orbignyana A. Juss. (Malpighiaceae) 2/3 0.47±0.01 5.0±1.7
Cecropia pachystachya Trécul (Cecropiaceae) 3/3 0.30±0.07 14.0±6.5
Couepia uiti (Mart. & Zucc.) Benth. ex Hook. f. (Chrysobalanaceae) 3/3 0.44±0.02 8.5±4.3
Coccoloba ochreolata Wedd. (Polygonaceae) 5/7 0.59±0.04 4.4±1.2
Duroia duckei Huber (Rubiaceae) 2/4 0.52±0.01 5.2±2.8
Garcinia brasiliensis (Mart.) Planch. & Triana (Guttiferae) 2/0 0.64±0.05 –
Mabea paniculata Spruce ex Benth. (Euphorbiaceae) 1/3 0.56 6.1±0.8
Mouriri guianensis Aubl. (Melastomataceae) 4/5 0.60±0.06 4.5±2.0
Ocotea longifolia Kunth (Lauraceae) 6/5 0.47±0.05 5.8±1.9
Sapium obovatum Kl. (Euphorbiaceae) 5/5 0.31±0.07 7.2±3.2
Vochysia divergens Pohl (Vochysiaceae) 17/26 0.40±0.08 7.9±2.8
Other species 81/65 0.48±0.14 5.7±3.2

Mean 133/136 0.47±0.13 6.3±3.5
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Table 3. Carbon stocks and C-sequestration in AGWB estimated allometric Eqs. (1–5) in four
stands of wetland forests in the Pantanal.

C-stocks (Mg C ha−1) Stand 1 Stand 2 Stand 4 Stand 3

Equation (1) 6.8 67.9 67.3 100.4
Equation (2) 8.1 73.9 70.3 101.4
Equation (3) 10.9 56.9 54.5 80.8
Equation (4) 8.6 116.1 108.8 164.9
Equation (5) 18.3 105.0 103.5 151.6

C-sequestration (Mg C ha−1 yr−1) Stand 1 Stand 2 Stand 4 Stand 3

Equation (1) 0.47 4.14 2.76 3.09
Equation (2) 0.54 4.33 2.74 2.98
Equation (3) 0.65 3.00 2.00 2.29
Equation (4) 0.59 6.97 4.89 4.28
Equation (5) 1.23 5.97 3.88 4.14
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Table 4. Comparison of C-storage, C-sequestration and C-turnover in AGWB of successional
stages in wetland forests of the northern Pantanal and floodplain forests in the Central Amazo-
nia.

Trees (DBH≥10 cm) C-stock C-sequestration C-turnover
(Mg C ha−1) (Mg C ha−1 year−1) (years)

Pantanal (this study)
Stand 1 (stand age 64 years) 7.4 0.5 14.7
Stand 2 (stand age 99 years) 70.9 4.2 16.7
Stand 3 (stand age 108 years) 68.8 2.8 25.0
Stand 4 (stand age 124 years) 100.9 3.0 33.2
Central Amazonian floodplain forests
Worbes (1997) (stand age 80 yrs) 140.0 – –
Schöngart (2003) (stand age 52 years) 117.4 7.2 16.4
Schöngart (2003) (stand age 125 years) 115.0 3.7 30.7
Seasonal dry forests∗

Vargas et al. (2008) (stand age 64 years) 64.4 – –
Vargas et al. (2008) (stand age 99 years) 103.9 – –
Vargas et al. (2008) (stand age 108 years) 114.1 – –
Vargas et al. (2008) (stand age 124 years) 132.1 – –

∗ calculated by a linear regression model considering trees ≥10 cm DBH (Vargas et al., 2008).
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Fig. 1. Overview of study site in N-Pantanal (SESC Pantanal Ecological Station) of Brazil.
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Fig. 2. Non-linear relationships between DBH and tree height of stands 1–4.
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Fig. 3. Significant age-diameter relationships for V. divergens and other tree species. The
dotted lines indicate the annual current diameter increment (CDI). Indicated parameters are for
the age-DBH relationship of Eq. (7).
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Fig. 4. Quadratic multiple regression model predicting tree age as a function of DBH and wood
density developed by a data set of 117 trees of different successional stages of the wetland
forests in the northern Pantanal.
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